Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithms for Hardware Implementations
نویسندگان
چکیده
We describe how a simple way to split input operands allows for fast VLSI implementations of subquadratic GF (2)[x] Karatsuba-Ofman multipliers. The theoretical XOR gate delay of the resulting multipliers is reduced significantly. For example, it is reduced by about 33% and 25% for n = 2 and n = 3 (t > 1), respectively. To the best of our knowledge, this parameter has never been improved since the original Karatsuba-Ofman algorithm was first used to design GF (2) multipliers in 1990. Index Terms Karatsuba algorithm, Karatsuba-Ofman algorithm, polynomial multiplication, subquadratic space complexity multiplier, finite fields, Galois fields.
منابع مشابه
Overlap-free Karatsuba-Ofman polynomial multiplication algorithms
We describe how a simple way to split input operands allows for fast VLSI implementations of subquadratic GF (2)[x] Karatsuba-Ofman multipliers. The theoretical XOR gate delay of the resulting multipliers is reduced significantly. For example, it is reduced by about 33% and 25% for n = 2 and n = 3 (t > 1), respectively. To the best of our knowledge, this parameter has never been improved since ...
متن کاملOverlap-free Karatsuba-Ofman Polynomial Multiplication Algorithm
Published in 1962 [1], Karatsuba-Ofman algorithm (KOA) was the first integer multiplication method broke the quadratic complexity barrier in positional number systems. Due to its simplicity, its polynomial version is widely adopted to design VLSI GF (2) parallel multipliers in GF (2)based cryptosystems [9]-[27]. Two parameters are often used to measure the performance of a GF (2) parallel multi...
متن کاملPartially Interleaved Modular Karatsuba-Ofman Multiplication
We describe a method of performing modular multiplication that has various applications in the field of modern cryptography and coding theory. The proposed algorithm, which combines the Karatsuba-Ofman multiplier and bipartite modular reduction, presents an interleaved processing on the upper most level of Karatsuba-Ofman's recursion. The method provides an efficient and highly parallel modular...
متن کاملEfficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems
Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it’s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propo...
متن کاملScalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba scheme...
متن کامل